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Radiation and Mortality of Workers at Oak Ridge National Laboratory:
Positive Associations for Doses Received at Older Ages

David B. Richardson and Steve Wing
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We examined associations between low-level exposure to ionizing radiation and mortality among
14,095 workers hired at the Oak Ridge National Laboratory between 1943 and 1972. Workers at
the facility were individually monitored for external exposure to ionizing radiation and have been
followed through 1990 to ascertain cause of death information. Positive associations were
observed between low-level exposure to external ionizing radiation and mortality. These associa-

tions were larger for doses received after 45 years of age, larger under longer lag assumptions, and
primarily due to cancer causes of death. All cancer mortality was estimated to increase 4.98%
[standard error (SE) = 1.5] per 10-mSv cumulative dose received after age 45 under a 10-year lag,
and 7.31% (SE = 2.2) per 10-mSv cumulative dose received after age 45 under a 20-year lag.
Associations between radiation dose and lung cancer were of similar magnitude to associations

between radiation dose and all cancers except lung cancer. Nonmalignant respiratory disease
exhibited a positive association with cumulative radiation dose received after age 45, whereas
ischemic heart disease exhibited no association with radiation dose. These findings suggest
increases in cancer mortality associated with low-level external exposure to ionizing radiation and
potentially greater sensitivity to the carcinogenic effects of ionizing radiation with older ages at
exposure. Key words: epidemiology, ionizing radiation, Oak Ridge National Laboratory. Environ
Health Perspect 107:649—-656 (1999). [Online 29 June 1999]
http://ehpnet].niehs.nih.gov/docs/1999/107p649-656richardson/abstract. html

People are exposed to ionizing radiation
from a wide range of occupational and envi-
ronmental sources. The effects of these
exposures remain a topic of substantial con-
cern and interest. Studies of atomic bomb
survivors and patients receiving medical
irradiation have provided widely cited epi-
demiologic evidence about the effects of
external exposure to ionizing radiation
(1-4). Epidemiologic studies of workers in
the nuclear industry, however, offer poten-
tially valuable information about the effects
of long-term, low-level ionizing radiation
exposures; such studies may be particularly
relevant to evaluations of the effects of the
low dose rate exposures typically received in
environmental and occupational settings.

In this paper we describe associations
between external exposure to ionizing radia-
tion and mortality among workers employed
at the Oak Ridge National Laboratory
(ORNL; Oak Ridge, TN), a United States
Department of Energy (DOE) facility.
Workers at the ORNL have been involved in
research and production of nuclear materials
since the facility’s construction in 1943 as
part of the U.S. government’s World War II
program to develop atomic weapons. These
workers have relatively complete external
radiation dosimetry data and vital status fol-
low-up (5,6). Previous studies of this work-
force have reported excess leukemia mortality
as compared to the general population (7,8)
and positive associations between cumulative
external ionizing radiation dose and cancer
mortality among white males at the ORNL

who had not been employed at other DOE
facilities (8,9). Subsequent analyses found
that these dose-response associations were
primarily due to the association between can-
cer mortality and radiation doses received at
older ages (10,11). In contrast to previous
studies, which focused on radiation—mortali-
ty associations among white males at the
ORNL who had not been employed at other
DOE facilities (7~9), we describe analyses
that include all ORNL workers for whom
data were adequately complete. We exam-
ined associations between external radiation
dose and several specific causes of death and
evaluated the sensitivity of these associations
to assumptions about the latency between
exposure and mortality.

Materials and Methods

This study included all employees hired at
the ORNL between 1943 and 1972 who
worked 30 or more days; for whom there
was complete information on sex, race, dates
of birth and hire; and who had no more
than 2 years of missing annual whole-body
dosimetry data from employment at other
DOE facilities (7 = 14,095). In contrast to
previous studies of radiation—cancer associa-
tions among workers at the ORNL, the
cohort included women, nonwhite workers,
and workers who were also employed at
other DOE facilities (primarily other DOE
facilities located in Oak Ridge, TN).

Vital status was ascertained through
1990 by the use of records from the Social
Security Administration, the National Death
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Index, and employers. Information on
underlying cause of death, as well as contrib-
utory causes of death related to cancer, was
abstracted from death certificates and coded
to the International Classification of Diseases,
8th Revision (ICD-8) adapted for the
United States. Comparisons of mortality of
workers to the general population are usually
based only on underlying causes of death
information; however, characterization of
deaths by a single underlying cause leads to
loss of information for decedents with multi-
ple morbid conditions. Therefore, in this
study, similar to previous analyses that have
compared mortality of ORNL workers with
different dose levels, we used both underly-
ing and contributory cause of death informa-
tion to define cancer death (8,12).

We examined deaths due to all causes
(any worker identified as deceased) because
this outcome is of broad public health signif-
icance and is not dependent on the accuracy
of information about cguses of death. All
cancer mortality (any worker who had an
underlying or contributory cause of death
assigned ICD-8 codes 140-209) was exam-
ined because radiation-induced cancers may
occur at most, if not all, sites following
whole-body exposure to ionizing radiation
and because death certificate data may be
more accurate for identifying all cancers as a
group than for identifying specific types of
cancer (2,13). The category of all causes
except cancer (any worker who did not have
an underlying or contributory cause of death
assigned ICD-8 codes 140-209) was exam-
ined to assess whether radiation—mortality
associations were specific to malignant dis-
eases. Lung cancer (any worker who had an
underlying or contributory cause of death
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assigned 1CD-8 code 162) was examined
because this was the most common cancer
cause of death in the cohort and this cancer
site is most strongly related to cigarette smok-
ing, which potentially may confound studies
of radiation—cancer associations (/4). All can-
cer mortality except lung cancer (any worker
who had an underlying or contributory cause
of death assigned ICD-8 codes of 140-209
except 162) was examined to assess the speci-
ficity of radiation—cancer association to lung
cancer. Ischemic heart disease (any worker
who had an underlying cause of death
assigned ICD-8 codes 410-414) was exam-
ined because it was a leading noncancer cause
of death, it was expected to be associated
with cigarette smoking, and it was potentially
indicative of bias due to selection of healthier
workers into exposed jobs. Nonmalignant
respiratory disease (any worker who had an
underlying cause of death assigned 1CD-8
codes 460-519) was examined as a non-
cancer outcome expected to be associated
with cigarette smoking.

Personal monitoring data for whole-body
exposure to external penetrating ionizing
radiation (primarily gamma rays) were avail-
able for the period 1943-1985 from records
at the ORNL. External ionizing radiation
exposure monitoring began at the ORNL in
February 1943; by 1948 over 98% of the
employed workers were monitored, and by
November 1951 all ORNL workers were
required to have a radiation dosimeter, which
was later incorporated into a security badge
required to be worn at all times (5,6). Annual
external radiation doses were estimated for
work-years at the ORNL with missing dose
data by using dose estimates in adjacent time
periods and average values for similar workers
(15). Radiation dosimetry data from other
facilities, including Y-12 (Oak Ridge, TN),
K-25 (Oak Ridge, TN), Hanford (Richland,
WA), and the Savannah River Site (Aiken,
SC), were merged with the ORNL records;
workers who had more than 2 years of miss-
ing external radiation dose data during
employment at other DOE facilities were
excluded from analyses.

Statistical methods. Statistical analyses of
radiation—mortality associations were con-
ducted using the Poisson regression method
(16,17). Person-time and events were allo-
cated in tables stratified by all covariates and
cumularive radiation dose (18). Age at risk
was classified in 5-year intervals from < 25
years to = 90 years. Birth cohort was classi-
fied as births before 1905, between 1905
and 1915, between 1915 and 1925, or after
1925. Sex was included with two levels; race
indicated whether or not a worker was classi-
fied as white. Paycode, which was used to
control for socioeconomic differences in can-
cer mortality, was based on the worker’s pay

650

schedule when hired and indicated whether
a worker was paid monthly, weekly, or
hourly. Employment status, which indicated
whether or not a worker had been employed
within the last 2 years, was used to control
for mortality differences between actively
employed and terminated workers (/9-21).
Internal exposure to radionuclides has been
monitored since 1951. Internal monitoring
status was lagged the same number of years
as external dose and indicated whether a
worker was employed during those years
when monitoring for internal radionuclide
contamination was conducted, and if so,
whether the worker had ever been moni-
tored. Facility of employment was examined
as a covariate that indicated whether or not
the ORNL was the only DOE facility at
which the worker was employed.

After evaluation of the data, we deter-
mined that a single term could be used to
adjust for age at risk centered at 52.5 years in
a log-log relationship for cancer causes of
death and in a log-linear relationship for
noncancer causes (22). This is similar to pre-
vious analyses of mortality of workers at the
ORNL and has been demonstrated to be an
efficient method for adjusting for age at risk
(23,24). Other covariates were included
using indicator terms. Terms were included
to describe interactions between birth cohort
and paycode, changes with age at risk in the
association between cancer mortality and
employment status, and differences by sex in
the effects of race and birth cohort. Due to
the limited number of lung cancer deaths
among female workers, analyses of lung can-
cer mortality could not support interactions
between race or cohort and sex. Similarly,
analyses of nonmalignant respiratory disease
do not include a race—sex interaction term.

Cumulative external ionizing radiation
doses were classified in seven 20-mSv cate-
gories from 0 mSv to = 100 mSv. To consid-
er a lag between exposure and mortality,
deaths and person-time were classified
according to the cumulative external radia-
tion dose received 5, 10, and 20 years earlier.
In regression analyses, cumulative dose was
evaluated as a continuous variable, providing
an estimate of the percent change in mortali-
ty per 10-mSv cumulative dose (see
Appendix). We previously demonstrated
that white male ORNL workers show sub-
stantial heterogeneity in radiation—cancer
associations with age at exposure (10,11) and
that the best fitting model was produced
when cumulative dose was partitioned at 45
years of age. In the analyses reported here, a
regression model with separate terms for
doses received before and after age 45 was
compared to a nested regression model with
a single term for all ages of exposure com-

bined (see Appendix). Results include an

indication of the change in deviance on
inclusion of a dose term in the regression
model. This value is referred to as likelihood
ratio test (LRT) statistic and can be inter-
preted using a chi-square distribution with
one degree of freedom (df); larger values
indicate a better fit of the regression model
to the observed data (/6).

Results

Vital status was ascertained for 94% of the
cohort in follow-up through 1990 (Table 1).
Of the 14,095 workers in the cohort, 3,269
(23%) were deceased at the end of follow-
up. Death certificates were retrieved for 97%
of the decedents, from which 879 deaths due
to cancer were identified. The follow-up
period includes 425,486 person-years. The
distribution of person-time and deaths by
study factors is described in Table 2.
Lifetime cumulative dose was positively
associated with all cancer mortality under
5-, 10-, and 20-year lag assumptions (Table
3). However, radiation—cancer associations
were of larger magnitude and better fit
when radiation doses received after age 45
were examined than when associations with
lifetime cumulative dose were examined
(Table 3). Cumulative dose received after
45 years of age was positively associated
with all cancer mortality under a 5-year lag
assumption (4.39%/10 mSv), 10-year lag
assumption (4.98%/10 mSv), and 20-year
lag assumptions (7.31%/10 mSv). The LRT
statistic for the association between doses
received after age 45 and all cancer mortality
was marginally larger under a 10-year lag
assumption (LRT = 9.4; 1 df) than under a
S-year lag assumption (LRT = 8.7; 1 4f) or
20-year lag assumption (LRT = 8.4; 1 4f).
We used a nested regression model to com-
pare the fit of the dose—response model for
lifetime cumulative dose to the fit of the
model that allowed the association to differ
for exposures received before and after age 45
(Table 3). The change in deviance between
nested regression models provided an LRT of
the heterogeneity in dose-response associa-
tions for exposures received before and after
45 years of age; the results indicate substan-
tial improvement under the assumption that
the dose-response association differed for

Table 1. Vital status of the study cohort of Oak
Ridge National Laboratory workers as of 31
December 1990.

No. men No. women Total no.

(%) (%) (%)
Alive 7,399 2,568 9,967
(69.1) (75.8) (70.7)
Dead 2,890 379 3,269
(27.0) (11.2) (23.2)

Unknown 47 442 859
(3.9 (13.0) (6.1)
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exposures received at older and younger ages
(Table 3). Adjustment of dose—response
associations for doses received before age 45
had little effect on the estimated associations
between doses received after age 45 and all
cancer mortality. When we did not adjust

for associations between all cancer mortality
and radiation doses received before age 45
in the model, we estimated a 4.54% (SE =
1.33) increase in all cancer mortality per 10
mSv dose received after age 45 under a 10-
year lag assumption.

Table 2. Distribution of person-years and deaths by study factors among Oak Ridge National Laboratory

(ORNL) workers.

All All Lung Ischemic Nonmalignant  Person-
cause  cancer cancer heart disease respiratory years of
deaths  deaths deaths deaths deaths follow-up

Age
<30 59 6 1 0 0 52,693
30-50 475 98 23 100 9 214,198
50-70 1,684 519 156 543 63 140,007
70+ 1,051 256 65 333 95 18,589
Sex
Male 2,890 750 219 913 150 326,767
Female 379 129 26 63 17 98,718
Race
White 2,961 819 235 906 156 398,674
Other 308 60 10 70 n 26,812
Facility of employment
ORNL only 2,576 693 189 781 135 334,318
Other 693 186 56 195 32 91,168
Pay code
Hourly 690 181 67 209 40 65,706
Weekly 1,706 442 134 493 91 214,684
Monthly 873 256 44 274 36 145,096
Birth cohort
<1905 778 162 38 306 49 22,902
1905-1915 985 252 68 318 77 55,968
1915-1925 1,017 32 105 263 35 139,233
1925+ 489 144 34 89 6 207,383
Employment status
Employed within last 536 162 4 146 8 169,816
2 years
Not employed 2,733 n7 204 830 159 255,670
Internal radiation
monitoring
Not monitored 2,202 565 150 669 116 91,619
Monitored 1,002 304 92 297 50 273,513
Not eligible to be 65 10 3 10 1 60,354
monitored
Total 3,269 879 245 976 167 425,486

Table 3. Estimated percent increase in all cancer mortality among Oak Ridge National Laboratory (ORNL)
workers per 10-mSv cumulative external ionizing radiation dose under 5-, 10-, and 20-year lag assumptions.

Model 1: Partitioned

Model 2: Lifetime Model 1 versus

cumulative dose cumulative dose Model 2
Cumulative dose  Cumulative dose Cumulative dose
received before received after received after
age 45 age 45 age 16 LRT?
5-year lag
Percent increase -0.86 439 1.06
SE 1.05 1.36 0.61
LRT1 df 0.7 8.7 2.7 6.22
10-year lag
Percent increase -0.69 498 1.21
SE 1.05 1.48 0.65
LRT,1 df 05 94 30 6.62
20-year lag
Percent increase 0.24 7.31 173
1.12 224 0.86
LRT1 df 0.05 84 35 5.79

Abbreviations: df, degree of freedom; LRT, likelihood ratio test; SE, standard error. Adjusted for age, race, sex, birth

cohort, employment status, paycode, internal radionuclide monitoring, and the interaction between race and sex, sex

and birth cohort, paycode and birth cohort, and employment status and age.
2 RT comparing Model 1 to Model 2, which has a chi-square distribution with 1 df.
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The fit of these regression models to the
observed data was examined graphically, eval-
uating associations between radiation dose
and all cancer mortality under a 10-year lag
assumption (Figure 1). Figure 1 shows the
relationship between all cancer mortality and
lifetime cumulative dose (Figure 1A), cumu-
lative dose received before age 45 (Figure
1B), and cumulative dose received after age
45 (Figure 1C). There do not appear to be
any systematic departures from linearity.

These radiation—cancer dose-response
associations were based on a multiplicative
relative risk model in which mortality is
described as increasing on a natural log scale
with increasing cumulative radiation dose.
However, within the range of observed
cumulative doses, the magnitude of associa-
tion between all cancer mortality and radia-
tion doses received after 45 years of age was
similar when estimated using an additive rel-
ative risk model. Under an additive relative
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Figure 1. Ratio of observed (Obs) to expected
(Exp) number of all cancer deaths by cumulative
dose under a 10-year lag. (A) Association with
lifetime cumulative dose. (B) Association with
cumulative dose received before the age of 45
years. (C) Association with cumulative dose
received after the age of 45 years. Points repre-
sent the ratio of observed cancer deaths to the
number expected in each cumulative dose cate-
gory based on the covariate-specific distribution
of person-time. Solid lines represent the estimat-
ed percent increase in cancer mortality with
increasing cumulative dose.
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risk model, cumulative dose received after
age 45 was associated with a 6.85% (SE =
3.10; LRT = 8.6; 1 df) increase in all cancer
mortality per 10 mSv under a 10-year lag
assumption.

All cause mortality was also positively
associated with cumulative radiation dose
received after 45 years of age; associations
increased in magnitude under longer lag
assumptions, from 1.10%/10 mSv under a
S-year lag assumption to 3.54%/10 mSv
under a 20-year lag assumption (Table 4).
However, associations between cumulartive
dose received after age 45 and cancer mortal-
ity were of substantially larger magnitude
and better fit than associations with all cause
mortality (Table 4). Associations between
radiation dose reccived after age 45 and all
causes of death except cancer were negative
under 5- or 10-year lag assumptions and
positive under a 20-year lag assumption.
Likelihood ratio tests indicate relatively little
contribution of the dose term to fit of the
models for noncancer mortality (Table 4).

We divided the category of all cancer
mortality into two groups: lung cancer and
all cancers other than lung cancer (Table 4).
Estimated associations between cumulative
radiation dose received after 45 years of age
and lung cancer were positive under a S-year
lag assumption (5.19%/10 mSv), a 10-year
lag assumption (5.48%/10 mSv), and a 20-
year lag assumption (6.63%/10 mSv).
Similarly, estimated associations berween
cumulative radiation dose reccived after 45
years of age and cancer other than lung can-
cer were positive under a 5-year lag assump-
tion (3.88%/10 mSv), a 10-year lag assump-
tion (4.67%/10 mSv), and a 20-year lag
assumption (7.69%/10 mSv). The best fit-
ting models were a 5-year lag assumption for
lung cancer mortality (LRT = 4.5; 1 df) and
a 20-year lag assumption for other cancers
(LRT = 6.6 1 df).

Associations between ischemic heart dis-
ease and cumulative dose received after age 45
were negative under all lag assumptions, with
small likelihood ratio test statistics (Table 4).
Nonmalignant respiratory discase was posi-
tively associated with cumulative dose
received after 45 years of age, with small LRT
statistics under 5- and 20-year lag assump-
tions. The magnitude (5.66%/10 mSv) and
goodness of fit (LRT = 3.2; 1 df) of the asso-
ciation between nonmalignant respiratory dis-
ease and radiation dose was largest under a
10-year lag assumption. There were few
deaths at higher doses when the association
between nonmalignant respiratory disease and
doses received after 45 years of age were
examined under a 20-year lag assumption.

To further describe the fit of these mod-
cls for radiation—cancer dose-response associ-
ations to the observed data, ratios of observed
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Table 4. Estimated percent increase in cause-specific mortality among Oak Ridge National Laboratory
workers per 10-mSv cumulative external radiation dose received after age 45, under 5-, 10-, and 20-year

lag assumptions.

5-Year lag 10-Year lag 20-Year lag

All cause mortality

Percent increase per 10 mSv 1.10 1.19 354

SE . 0.96 1.42

LRT, 1 df 15 15 55
All cancer mortality

Percent increase per 10 mSv 4.39 498 731

SE 1.36 1.48 224

LRT, 1 df 8.7 94 8.4
All causes except cancer

Percent increase per 10 mSv -0.30 -0.44 2.04

SE 1.12 1.25 1.81

LRT, 1 df 01 0.1 12
Lung cancer?

Percent increase per 10 mSy 519 5.48 6.63

SE 2.2 245 418

LRT, 1 df 45 41 20
All cancers except lung

Percent increase per 10 mSv 3.88 467 7.69

SE 1.74 1.87 264

LRT, 1 df 42 52 6.6
Ischemic heart disease

Percent increase per 10 mSv -2.39 -2.86 -0.16

SE 1.81 2.06 2.99

LRT, 1 df 1.9 2.1 00
Nonmalignant respiratory disease?

Percent increase per 10 mSv 455 5.66 3.57

SE 2.79 293 4.95

LRT, 1 df 23 32 05

Abbreviations: df, degree of freedom; LRT, likelihood ratio test; SF standard error. Adjusted for cumulative dose received
before age 45, age, race, sex, birth cohort, employment status, paycode, internal radionuclide monitoring, and the inter-
action between race and sex, sex and birth cohort, paycode and birth cohort, and employment status and age.

There is no race-sex interaction in the model for nonmalignant respiratory disease, and no race—sex or sex—cohort

interactions in the model for lung cancer.

to expected cancer deaths were tabulated by
categories of cumulative dose received after
45 years of age under 5-, 10-, and 20-year lag
assumptions (Table 5). This table also pro-
vides a description of the distribution of per-
son-time and deaths by level of cumularive
external radiation dose received after age 45.
The ratio of observed to expected deaths
tended to increase with increasing dose
received after age 45 for each of the three cat-
egories of death examined (Table 5). As
longer lag assumptions were evaluated and
deaths and person-years shifted to lower
cumulative dose groups, the ratio of observed
to expected deaths tended to increase for the
highest cumulative dose categories.

Discussion

Epidemiologic studies of badge-monirored
workers in the nuclear industry provide a
potentially important source of evidence
about the health effects of low-level expo-
sure to ionizing radiation. Studies of work-
ers employed at the ORNL allow examina-
tion of a cohort with a long duration of fol-
low-up, nearly complete external radiation
dosimetry records, and a high level of vital
status follow-up.

Previous analyses determined that, over-
all, workers at the ORNL have low mortality

rates in compaison to the general population
(8,12). This observation is consistent with
other studies of DOE workers and typical of
mortality patterns for well-paid, highly edu-
cated workers in the United States (25). An
exception to the low overall mortality rates
among ORNL workers as compared to the
general population, however, is the observed
excess mortality due to leukemia and ill-
defined causes (7,8). Previous investigations
of radiation—cancer associations among
ORNL workers have focused on white male
ORNL workers who were not employed ar
other DOE facilities. These workers have the
most complete radiation dosimetry dara and
vital status follow-up. In that subcohort, pos-
itive associations between cumulative whole-
body ionizing radiation dose and mortality,
primarily due to cancer, were reported with
follow-up through 1984 (8). Subsequent
analyses of that subcohort reported that asso-
ciations between radiation dose and cancer
mortality were primarily due to radiation
doses accrued at older ages (10,11,24).

In this paper, we examine an expanded
cohort of ORNL workers, with follow-up
through 1990. Given this expanded cohort
and additional period of follow-up, these
analyses include twice as many deaths as pre-
vious reports on radiation—cancer associations
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Table 5. Ratio of observed to expected deaths for cancer causes of death and observed deaths (shown in
parentheses) by lag period and grouped dose received after the age of 45 years.

Dose received after age 45

Cause of death

OmSv 0-20mSv 2040 mSv 40-60 mSv 60-80 mSv 80-100 mSv 100+ mSv

All cancer
5-year lag 0.99 0.96 112
(561) (237) (32)
10-year lag 0.99 0.97 0.99
(593) (217) (25)
20-year lag 1.00 0.91 1.35
(703) (135) (20)
All cancer except lung
5-year lag 0.99 0.99 0.97
(411) (174) (19)
10-year lag 1.00 0.97 0.94
(436) (155) (16)
20-year lag 1.00 0.93 1.29
(508) (100) (13)
Lung cancer
5-year lag 0.98 0.90 1.43
(150) (63) (13)
10-year lag 0.98 0.96 1.09
(157) (62) (9)
20-year lag 1.01 0.83 1.51
(195) (35) (7)
Person-years 387873 31,881 27,497

10-year lag

1.24 0.83 1.26 1.88
(17) (8) (5) (19)
1.09 1.18 092 2.22
(13) (10) (3) (18)
0.78 1.03 327 268
(5) (4) (5) 7
1.22 0.78 0.78 1.88
(1) (5) (2) (12)
1.16 1.08 0.47 214
(9) (6) (1) (11)
0.70 037 3.70 2.76
3) (1) (4) (5)
127 0.92 2.08 1.85
(6) (3) (3) 7
0.96 137 173 233
(4) (4) (2) (7)
098 254 2.25 2.57
(2) (3) (1) (2)
1,228 748 323 686

Adjusted for age, race, sex, birth cohort, employment status, paycode, internal radionuclide monitoring, and the interac-
tion between race and sex, sex and birth cohort, paycode and birth cohort, and employment status and age.

among white male ORNL workers followed
through 1984 (8). With these data we inves-
tigated associations between age-specific
cumulative radiation doses and cause-specific
mortality. Cumulative doses received after
age 45 were associated with all cancer mortal-
ity under a range of lag assumptions and
were associated with lung cancer mortality as
well as mortality from cancers other than
lung cancer (Table 4).

We evaluated age at exposure using a
single critical age value. However, this
should not be interpreted as suggesting that
sensitivity to radiation changes abruptly at a
particular age. Previous analyses demonstrat-
ed that the magnitude of association
between cancer mortality and external radia-
tion dose increased as critical ages between
40 and 55 years were considered (11,24),
although age 45 yielded the best fitting
model. In these analyses, there was little evi-
dence of associations between cancer mortal-
ity and doses accrued at younger ages (Table
3). This may be a consequence of smaller
magnitude associations between radiation
doses accrued at younger ages and cancer
mortality; additionally, selection of young,
healthy workers into jobs with higher radia-
tion exposures due, for example, to occupa-
tional health screening might have led to a
downward bias in dose~response associations
for exposures accrued at younger ages.

Although this study included more work-
ers than previous studies of radiation—cancer
associations among ORNL workers, the
study still had a limited ability to examine
associations between radiation and many

specific cancers, in part because of the cross-
classification of events by younger and older
age exposures. Consequently, these analyses
focused on all cancer, lung cancer, and all
cancers except lung cancer because there were
adequate data to support investigations of
dose-response associations for these causes of
death. Leukemia mortality, while of potential
interest, occurred too infrequently in this
cohort to allow investigation of associations
with radiation doses received after 45 years of
age; only one leukemia death was observed
among workers who received > 40 mSv
cumulative dose after age 45 (24).

Radiation—cancer associations may differ
between men and women; however, there
were insufficient data to evaluate differences
in radiation—cancer associations between
male and female workers in this cohort.
These analyses included 3,389 women,
among whom 129 deaths due to cancer were
identified (Table 2). Deaths occurred primar-
ily among weekly paid women who tended to
have relatively low cumulative recorded
external radiation doses. We considered sepa-
rate analyses of radiation—cancer associations
among women; however, only 16 cancer
deaths occurred among women with cumula-
tive external doses of 2 10 mSv, and there
was only one cancer death among women
who received > 50 mSv.

We examined demographic and employ-
ment variables in these analyses for two
reasons: to investigate whether mortality pat-
terns for workers in this occupational cohort
conformed to expectations from the epi-
demiologic literature, and to adjust for
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potential confounding of radiation-mortality
associations. Given observations of changes
in age-specific cancer mortality rates between
historical periods, we adjusted for potential
confounding by birth cohort. We examined
paycode as a measure of socioeconomic sta-
tus; workers who were paid monthly tended
to be employed in higher socioeconomic
jobs, whereas workers who were paid either
hourly or weekly were typically employed in
lower socioeconomic status jobs. We adjusted
for employment status in order to evaluate
potential confounding due to health-related
selection of people out of the workforce
(described as a “healthy worker survivor
effect”) (19,21). Some previous analyses that
examined data for ORNL workers did not
adjust for employment status (23,26).
Dropping the employment status terms from
our model yielded an estimated 5.36% (SE =
1.46) increase in all cancer mortality per 10
mSv cumulative dose received after 45 years
of age under a 10-year lag, as compared to
the 4.98%/10 mSv estimate derived after
adjustment for employment status (Table 4).
We found that with the exception of age at
risk, adjustment for these demographic and
employment factors exerted little influence
on our estimates of associations between
external radiation dose and cancer mortality.
For the ORNL workers included in this
study, there was little quantitative informa-
tion about individual exposure to agents
other than external ionizing radiation. There
is the potential for confounding, or modifi-
cation, of radiation—mortality associations by
chemical and internal radionuclide expo-
sures. In previous analyses of white male
ORNL workers, however, neither examina-
tion of job titles, which were used as an indi-
cator of occupational exposures other than
external ionizing radiation, nor evaluation of
potential exposure to beryllium, lead, and
mercury substantially changed estimates of
the association between radiation and cancer
mortality (9). Although data from internal
exposure monitoring provided only a poor
indicator of exposure from internally
deposited radionuclides, radionuclide conta-
mination was not considered to be a major
hazard among workers at the ORNL.
Cigarette smoking has also been consid-
ered as a possible confounder of radiation—
cancer dose—response relationships at the
ORNL (8,27,28). Historical smoking data
were not available for these workers; conse-
quently, we evaluated the plausibility of con-
founding by cigarette smoking indirectly.
Radiation dose—response relationships were
compared between causes of death with dif-
ferent magnitudes of association with smok-
ing (8,27-29). Lung cancer is the primary
component of associations between smoking
and cancer mortality; the excess relative risk
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for smoking and lung cancer is approximately
one order of magnitude greater than for
smoking and other cancers (14). If cigarette
smoking were positively associated with radia-
tion dose, observed associations between radi-
ation and lung cancer would be much larger
than associatjons between radiation and can-
cers other than lung cancer. However, we
found that radiation—cancer dose—response
associations were not substantially stronger
for lung cancer than for other cancers; in fact,
the radiation—cancer dose-response relation-
ship was of smaller magnitude for lung cancer
than for other cancers under a 20-year lag
assumption (Table 4). Among other smok-
ing-related causes of death, associations with
radiation doses received after the age of 45
years were positive for nonmalignant respira-
tory disease and negative for ischemic heart
disease, but imprecise in both cases (Table 4).
These findings, which provide little sugges-
tion of confounding by cigarette smoking,
conform to expectations from the literature.
General discussions about occupational epi-
demiology studies that use internal rather
than external referent groups (29,30), empiri-
cal investigations in other worker studies
(31-33), and simulations (34) suggest that
confounding by cigarette smoking would be
“relatively modest in most situations”(34). In
addition, if smoking is the reason for the
observed associations, smoking patterns
would have to be positively associated with
cumulative doses received at older ages, but
not associated with cumulative doses received
at younger ages. Furthermore, this age at
exposure-related association must occur with-
in strata of age at risk, sex, birth cohort, pay-
code (a marker of socioeconomic status), and
period of hire (9,24).

This study used annual external ionizing
radiation dosimetry records as a measure of
the primary exposure of interest. A substantial
amount of attention has been given to evalua-
tions of ORNL dosimetry data. While the
external dosimetry records for ORNL workers
are relatively complete, attention has been
given to the issue of missing annual external
dosimetry records. As an alternative to the
assumption that values for missing annual
external dosimetry records were zero, we esti-
mated doses for years of employment at
ORNL with missing records (15). Attention
has also been given to potential underestima-
tion of doses due to the practice of recording
zeros for dosimetry readings that were less
than the minimum detectable level of the
dosimeters used at the ORNL (6,35-3)).
However, in previous evaluations of an
adjustment method for dose underestimation,
litcle influence on dose-response estimates
was found (/2).

Current understanding of the biologic
processes involved in carcinogenesis supports
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the conclusion that age at exposure may play
an important role in modifying radiation—
cancer associations (38-41). lonizing radia-
tion is a well-established carcinogen known
to cause aberrations and point mutations in
human chromosomes (2). Fortunately, the
body has mechanisms for identifying and
destroying damaged cells, and mechanisms
for repairing radiation-induced damage to
chromosomes (2). However, with increasing
age, the accuracy and efficiency of these cel-
lular-repair processes, and of immune
responses, declines (42-45). This is one rea-
son why associations between radiation doses
and cancer might be larger for ionizing radia-
tion doses received at older ages. Theoretical
models of a multistage process of carcinogen-
esis also suggest that the effect of a carcino-
genic exposure may depend upon the age at
which exposure was received (38,46).

The conclusion that sensitivity to exter-
nal ionizing radiation increases with age
among adults, however, is at odds with con-
clusions drawn from the Life Span Study
(LSS) of atomic bomb survivors, which has
played an influential role in radiation risk
estimation (2,47). When considering atomic
bomb survivors who were adults at the time
of the attack, radiation—cancer associations
show different trends with age at exposure
for different causes of death. The excess rela-
tive risk for cancers of the trachea, bronchus,
and lung has been reported to increase with
older age at exposure (47), and the excess
risk for leukemia was larger for atomic bomb
survivors who were over 40 years of age at
the time of bombing than for adults 20-40
years of age (48). In contrast, associations
between radiation and breast cancer, for
example, have been reported to decline sub-
stantially with age at exposure in the LSS
(47); similar findings have been reported in
studies of medical irradiation (49). Such
observations suggest the need to consider
variation in patterns of radiation risk with
age at exposure by cancer type. This study of
ORNL workers provided insufficient data to
examine radiation—cancer associations sepa-
rately for many types of cancer. There are
also other possible explanations for differ-
ences in findings between the LSS and this
study. This study of ORNL workers investi-
gates the effects of long-term, low-level
external radiation exposure among relatively
healthy workers. In contrast, it has been sug-
gested that patterns of selective survival fol-
lowing acute high-level radiation exposure
may have obscured evidence of age-related
differences in radiation sensitivity among
atomic bomb survivors. Mortality due to the
acute effects of the atomic bombing (from
radiation exposure, as well as physical injuries
from the explosion and environmental depri-
vation) among residents in Hiroshima and

Nagasaki, Japan, may have led to selective
survival and a lack of comparability in sensi-
tivity to the carcinogenic effects of ionizing
radiation between the higher and lower
exposed survivors (50-52).

Some previous studies of workers
exposed to low-level ionizing radiation have
shown no evidence of differences in radia-
tion—mortality associations with age at expo-
sure (23,26), whereas other studies have
reported stronger dose—response associations
with older ages at exposure (10,11,45,53).
When contrasting findings from this study
of ORNL workers with other studies, it is
important to recognize the differences in the
patterns of exposure, study populations,
sources of darta, and follow-up. This study
includes 14,095 workers; although this is a
sizable epidemiologic cohort, the study
includes substantially fewer people than
recent pooled analyses of nuclear workers
(12,26,53). However, although a larger sam-
ple size increases the precision of risk esti-
mates, it does not reduce bias. Inclusion of a
large number of workers with incomplete or
inaccurate exposure information, for exam-
ple, may produce biased findings rather than
increase the ability of a study to detect an
association. One recent pooled analysis of
DOE workers suggested that pooling ORNL
cohort data with data for the Oak Ridge Y-
12 facility could obscure radiation—mortality
associations because exposure information
was less complete for Y-12 workers (72). In
occupational cohort studies of nuclear work-
ers at several DOE facilities, Stewart and
Kneale (45,53) reported that the magnitude
of radiation—cancer associations increased
with older age at exposure. Stewart and
Kneale (45,53), however, also reported that
evidence of heterogeneity in radiation—can-
cer associations between cohorts suggests
that pooling data may be inappropriate. In a
study that pooled data from four uranium
processing facilities, Dupree et al. (54) also
reported that positive associations between
external radiation and lung cancer were
observed only among workers first hired
after 45 years of age.

An estimated 600,000 workers have been
employed by the DOE (55), with millions
more people worldwide exposed to low-level
ionizing radiation through occupational and
environmental releases from commercial
nuclear facilities and medical and industrial
sources. Recent initiatives to fund indepen-
dent investigations into the health effects of
low-level radiation, to provide more open
communication about research findings, to
allow public access to epidemiologic data,
and to offer information about environmen-
tal sources of radiation exposure are intend-
ed to help open discussions and increase
public participation in decisions about the
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uses of nuclear technologies (55-57). The
data used in these analyses are publicly avail-
able via the Comprehensive Epidemiological

Data Resource (57). This is encouraging™

because the involvement of labor organiza-
tions and community groups in epidemio-
logic research, in the scrutiny of findings,
and in the use of studies for advocacy has
been central to achieving the public health
goals of occupational and environmental
protection (58,59).

While there are acknowledged limita-
tions to the available data for studying work-
ers in the nuclear industry, such studies offer
one approach to addressing concerns about
long-term, low-level exposures to ionizing
radiation that are typical of occupational and
environmental settings (60). The magni-
tudes of the radiation—cancer associations
observed in these analyses are substantially

exposure in these analyses suggests that fur-
ther attention should be given to factors that
influence sensitivity to the carcinogenic
effects of ionizing radiation. A more com-
plete understanding of the effects of ionizing
radiation exposures, however, also requires
consideration of a wider range of health out-
comes. Although exposures received at older
adult ages may be important for cancer mor-
tality, exposures received at younger ages
may be important for other biologic effects
of ionizing radiation (such as nonfaral dis-
eases and reproductive effects). A better
understanding of variation in radiation sensi-
tivity among individuals, and investigations
of other potential biologic effects of radia-
tion exposure, should inform and support
efforts to protect workers’ health and to
minimize unnecessary environmental expo-
sures to ionizing radiation.

larger than estimates derived from the LSS;
these differences are important to consider
because the LSS has served as a quantitative
basis for current radiation protection stan-

dards (2,4). The observed effect of age at
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Appendix

In the analyses presented in this paper, we examined a relative risk model of the form
MZxy) = e 200+ Bx+8y where the mortality rate (A) was considered in terms of a vector of
covariates (/), the radlatlon dose accumulated before age 45 (x), and the radiation dose accu-
mulated after age 45 (y) (16,17). A vector of parameter estimates, 0, was associated with the
covariates, and the parameter estimates 3 and  represented the change in the log of the rela-
tive risk per 10-mSv cumulative radiation doses accrued before and after age 45. This regres-
sion model was compared to a nested model of the form A(Zx,) = e+ Py 4 ), in which a
single parameter estimate for the sum of cumulative doses received before and after age 45,
D, represented the association between lifetime cumulative dose and mortality. These radia-
tion dose parameter estimates have been multiplied by 100 to yield the loglcal percentage
change in mortality per 10-mSv cumulative dose (61). For small increases in excess relative
risk, the logical percentage change approximates the absolute percentage change. To evaluate
the sensitivity of our findings to assumptions about regression model form, estimates were
also calculated using a relative risk model of the form A(Zx,y) = A (1 + Bx + ). This
model is described as an additive relative risk model and yields estimates of the absolute per-
centage change in mortality per 10-mSv dose (/6).

While cumulative dose and age at risk had to be categorized to generate person-time
tables, dose groups and age at risk groups were assigned quantitative values. We calculated
the cell-specific person-year weighted mean values for radiation doses and age at risk
(16,62). The use of cell-specific mean doses minimized the sensitivity of our findings to
decisions about dose categorization (62).

We created a table and graphs of the ratios of observed to expected deaths to allow fur-
ther examination of the data (Table 5, Figure 1A-1C). Although estimates of the percent
increase in mortality per 10-mSv dose were based on cell-specific person-year weighted
mean doses, the number of observed and expected counts in Table 5 represent the distribu-
tion of events across a smaller number of dose categories. There was a greater range of dose
values upon which the regression parameters were based than the number of dose groups
presented in either the figures or tabulations of observed and expected events. However, the
number of deaths in these tables allows consideration of the distribution of events upon
which regression analyses were based. The ratios presented in these tables allow comparison
of the occurrence of cancer deaths among the population with higher levels of dose received
after age 45 with those who received lower levels of dose after age 45; by comparing
observed-to-expected counts, these ratios adjust for differences in the distribution of covari-
ates between dose groups, as well as any association between dose received before age 45
and mortality.
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